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Abstract. Using electromyography (EMG) measurements for user interfaces 

(UIs) is widely employed as an interaction method. Some advantages of using 

EMG-based input are that it does not require a physical controller and can be 

operated intuitively with small body movements. Existing work has explored dif-

ferent novel interaction methods for UIs using EMG. However, it is still unclear 

how precisely users can control the force and what kind of control pattern is eas-

ier for them to use. Thus, this paper analyzes the effect of EMG-based force input 

on control accuracy and mental workload. We constructed a pointer-tracking ap-

plication that inputs force strength from forearm EMG. Tracking accuracy and 

mental workload were evaluated under the conditions of multiple tracking pat-

terns and hand gestures. The results showed that EMG-based input accuracy was 

affected by the way in which the force was applied (e.g., strengthened, weakened, 

or fluctuated). We also found that hand gesture type did not influence accuracy 

or mental workload.  

 

Keywords: Muscle–computer Interface, Electromyography, Force Input,  

Performance Evaluation. 

1 Introduction 

Electromyography (EMG) is a technique for measuring the change in muscle potential 

over time that is produced by skeletal muscles. There have been efforts to improve 

EMG measurement devices [1, 2]. In addition, multiple applications in various fields 

use EMG as input (e.g., entertainment, healthcare, and education [3]). In part, the use 

of EMG devices is popular because they can estimate the posture or specific body 

movements of users [4, 5]. For example, EMG-based input allows intuitive manipula-

tion by small body movements without a physical controller [6–8].  
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Previous studies have analyzed the controllability of the force estimated from an 

EMG signal [9, 10]. The studies discussed the validity of input in the UI with EMG 

compared to physical input methods. However, it is not clear which hand gestures or 

methods of applying force (e.g., keep strong/weak force) enable a user to control the 

input force more accurately and with less strain.  

Therefore, we investigated how a user can track different applied force patterns (e.g., 

ascending or descending lines) at different muscle activation levels under the next six 

hand gestures: fist, grip, pinch, and push on a surface with the index finger, thumb, and 

palm. The evaluation included qualitative and quantitative measures. To understand the 

accuracy, we computed how well users perform given force patterns. We also admin-

istered a six-question questionnaire to assess the mental workload. This experiment 

provides the first approximation of the relationship between performance force, accu-

racy, and mental workload. 

Human–computer interaction (HCI) researchers can use these results to design new 

hand gestures at various performing strengths or with a dynamic force input (which 

changes over time). This can lead to a wider range of interaction methods for EMG-

based applications. 

The contributions of this paper are as follows: 

 We are the first to analyze the effects of EMG-based force strength input on 

control accuracy and mental workload. 

 We clarify the features that can accurately control EMG-based force strength. 

 We clarify that certain hand gestures do not influence input accuracy or mental 

workload. 

2 Related Work 

In this section, we provide use cases of the muscle–computer interface and some foun-

dational research for our paper. We then describe the literature that explores EMG-

based input accuracy. We also point out that our experimental condition is novel com-

pared to previous studies. 

 

2.1 EMG-based Devices for User Interfaces 

EMG signals enable intuitive UI operation in real-time. Thus, controlling user inter-

faces through EMG is widely practiced in HCI research. Becker et al. demonstrated the 

gradual adjustment of lamp brightness using EMG-based force strength [6]. Benko et 

al. realized a variety of sketching brush strokes using forearm EMG [11]. These studies 

utilized EMG amplitude information as the inputted strength.  

Furthermore, EMG-based input enables human assistive activity. For example, 

Rosen et al. developed a powered exoskeleton system controlled by forearm EMG, 

which is naturally controlled by humans [12]. Rakasena et al. also proposed an electric 

wheelchair controlled by forearm EMG [13]. A variety of applications have used fore-

arm EMG as an input method. In contrast, in this study, we analyzed the impact of 

different EMG-based input approaches on controllability and mental workloads. 
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2.2 Detecting Gestures with EMG-based Signals 

The state of the human body can be estimated by extracting and learning the features 

of an EMG signal. The advantage of utilizing EMG is that it requires only simple meas-

urements without large body movements. Much research has estimated human states, 

for example, gestures and behaviors, from EMG signals using machine learning [9, 14]. 

In addition, the human body is composed of many muscles; therefore, the muscles of 

the face, legs, arms, and other body parts have been utilized for estimations [15, 16]. 

Many studies have estimated body movements from EMG signal features. In this study, 

we analyzed continuous tracking accuracy measured from EMG potentials. 

 

2.3 Continuous Tracking with EMG-based Input 

The ideal interaction with a UI is that the user intuitively and comfortably controls the 

target object, as expected. Several studies have investigated the influence of the EMG-

based force input of the forearm on tracking accuracy. Yamagami et al. performed a 

cursor-pointing task to analyze the controllability of the target trajectory [17]. The lit-

erature reports that EMG-based control showed higher accuracy than a physical con-

troller. Lobo-Prat et al. performed a one-dimensional tracking task using EMG-, force-, 

and joystick-based interfaces [18]. Corbett et al. also conducted a similar tracking task 

to compare EMG and force-based interfaces [19]. Their results revealed that EMG-

based operations have comparable or better controllability than other input methods. 

However, these studies examined accuracy under the conditions of a single gesture or 

a simple tracking pattern. To the best of our knowledge, this study is the first to consider 

multiple gestures and the way force is applied to evaluate tracking accuracy as well as 

mental workload. 

3 Experiment 

The main objective of this user study was to find the effects of EMG-based force input 

on control accuracy and mental workload. For that goal, we designed a two-factor re-

peated measures ANOVA on input accuracy and mental workload. We introduced the 

independent variables gesture and control patterns. As dependent variables, we evalu-

ated input accuracy and mental workload scores using NASA-RTLX [20].  

 

3.1 Apparatus 

We built an application using Unity (Ver. 2020.3.15) to visualize the exerted EMG 

(Fig. 1, Fig. 2a). The application runs at 120 frames per second with a display resolution 

of 1920 × 1080 pixels. We used the same EMG measurement device as in [21] (Fig. 

2c). The amplitude range of the device was –1.25 to +1.25 mv. The surface EMG sig-

nals were amplified 1000 times, and then, A/D conversion was applied to the signals. 

The measured signal was transmitted to the computer via serial communication at a 

sampling frequency of 1000 Hz. Two electrodes were attached 20 mm apart on the 
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dominant forearm [22]. The reference potential was set by letting the participants grasp 

the wrench. 

The general frequency range of EMG signals was from 5 to 500 Hz; therefore, we 

used the same frequency range in the experiment [23]. The signal filters used a high-

pass filter to cut low-frequency noise below 5 Hz and a low-pass filter to cut high-

frequency noise above 500 Hz. A band-pass filter was also applied to eliminate hum-

ming, with a cutoff frequency of 55–65 Hz (Table 1).  

An EMG signal contains positive and negative amplitudes; thus, the measured EMG 

signal was rectified and smoothed. We used the percentage of the root mean square 

(%RMS), which is a widely used indicator for smoothing EMG [3, 24]. The %RMS 

represents the myoelectric potential ratio of the measured RMS to the maximum vol-

untary contraction (MVC). The window size was 300 ms, with an overlap of 299 ms. 

Each RMS value corresponds to the white pointer in the Unity application.  

3.2 Hand Gestures 

A variety of hand gestures are used to interact with a user interface [25]. It is important 

to compare the controllability and mental workload between multiple gestures to design 

interactions. Thus, we selected six types of static hand gestures that do not move the 

forearm: fist, grip, pinch, finger push (index finger), finger push (thumb), and palm 

(Fig. 2b). The advantage of these gestures is that they do not change the hand position 

compared to dynamic gestures (e.g., swipe, slide, and tap). In this study, we focused on 

static gestures that can be employed for a variety of UI operations. 

The electrodes were affixed to the muscle position corresponding to the hand ges-

ture. Specifically, we attached electrodes to the extensor digitorum muscle for the fist 

and grip conditions. The flexor carpi radialis muscle corresponded to the finger push 

conditions (index and thumb). The brachioradialis muscle corresponded to the palm 

condition. The flexor pollicis longus muscle corresponded to the pinch condition. 

3.3 Task 

The participant controlled a pointer to keep it within the area of a blue target figure 

moving from the right side of the screen. The pointer moved up and down, ranging from 

0% to 100%, depending on the %RMS. Tracking accuracy was calculated for each of 

the six hand gestures. The target figure (control pattern), which refers to the method of 

applying force, was randomly shown from seven patterns (Fig. 3). The types of target 

figures are divided into the following categories: 

 Straight line (L1: low, L2: middle, L3: high) 

 Diagonal line (L4: uphill, L5: downhill) 

 Curved line (L6: inverted U-curve, L7: U-curve). 

The pointer was counted as correctly controlled if it was positioned inside the target 

diagram. Each diagram had a range of ±5% from the center (Fig. 3).  The duration of 

each diagram was 5 s. The seven types of target figures flowed in random order, with 

intervals of 5 s. One trial took 70 s ((5-s tracking time + 5-s intervals) × 7 target figures).  
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Fig. 1. The application for visualizing the input force used in the experiment. The partic-

ipant adjusted the force strength so that the pointer stayed inside the blue target figure. 

The participants’ maximum force strength was mapped to 100%. 
 

 
Fig. 2. Experiment setup. a) The participant controlled the strength of the force measured 

with EMG while viewing the measurement application. b) We set up six types of hand 

gestures: fist, grip, pinch, finger push (index finger), finger push (thumb), and palm. c) 

The measured EMG was sent to the application through the measurement device [21] 

and filter processing. 
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The trial was repeated six times, which is the number of hand gestures. The accuracy 

of each target diagram was calculated by dividing the duration of the correct position 

by 5 s. 

3.4 Participants 

Twelve participants (four women, �̅�= 21.2 years old; 11 right-handed) volunteered. All 

participants were university students majoring in computer science.  

3.5 Procedure 

The experiment began with an instruction session. Participants were first given infor-

mation about the experiment and signed a consent form. They were instructed to sit in 

a chair in front of the monitor, keep their back straight, and avoid bending forward. The 

participants were guided to place their elbows on the table so that they could relax their 

forearms. Floor mats were placed in the experimental area to block noise. For all ges-

tures, electrodes were attached to the participants’ dominant forearm, while the oppo-

site arm held the wrench.  

The instruction session was followed by the calibration session. The participants 

were asked to measure their MVC. They exerted their full strength for 2 s, and the 

average RMS was calculated as the MVC. This measurement was repeated for the six 

gestures. The measured MVC corresponded to 100% of the range that the pointer could 

move.  

Table 1. EMG processing parameters.  

Sampling frequency 1000 Hz 

Window size 300 ms 

Overlap window size 299 ms 

Indicator RMS 

Filters 

High pass: 5 Hz 

Low pass: 500 Hz 

Band-pass: 55–65 Hz 
 

 

 
Fig. 3. The methods for applying force. A total of seven figures (L1–7) were presented per 

hand gesture task. The pointer was counted as correctly positioned if it was located within 

±5% (%RMS) of the target diagram center. 
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Once the participants concluded their task, we asked them to answer the NASA-

RTLX questionnaire [26]. It contained six questions that assessed mental workload on 

a 20-point scale. The procedure was repeated until all hand gestures were evaluated, 

with sufficient breaks to avoid muscle fatigue. The order of the conditions was random-

ized. Finally, we conducted exploratory interviews to better understand the user expe-

rience. We collected 504 ratings (12 participants × 7 target figures × 6 gestures) on 

input accuracy and 72 ratings (12 participants × 6 gestures) on the NASA-RTLX score. 

The entire procedure took about 50 min. 

4 Results and Discussion 

The average tracking accuracy in each condition is shown in Fig. 4. The error bars 

indicate standard errors. The accuracy data were analyzed using a two-way ANOVA 

with gesture and control pattern factors. The statistical analysis revealed that the main 

effect of the gesture factor was not significant (F(5,55) = 1.588, p = .178), and the inter-

action was not significant (F(30,330) = 1.079, p = .360). In contrast, the main effect of the 

control pattern factor was significant (F(6,66) = 64.558, p<.001). Furthermore, we em-

ployed a post hoc test using Holm multiple comparisons (α = 0.05, two-sided test) for 

the control pattern factor and confirmed significant differences (Table 2). 

The statistical analysis showed that the smaller the force strength, the higher the 

accuracy (L1, L2, and L3). The L6 conditions, which required force strength fluctua-

tion, was as accurate as the L2 condition needed to maintain an intermediate force in-

tensity. The L7 condition showed statistically higher accuracy than the L6 condition. 

Moreover, the task of relaxing the force (L5) showed higher accuracy than strengthen-

ing the force (L4). The results showed that the EMG-based force strength and the way 

in which the force was applied had an impact on tracking accuracy. The participants 

commented that maintaining a strong force (L3) made it difficult to track the diagram. 

This comment was reflected in the experimental results. However, the type of static 

hand gesture showed no statistical differences in tracking accuracy. This suggests that 

the muscle intensity and the way the force was applied had more influence on tracking 

accuracy than the posture of the hand. 
The average NASA-RTLX scores for the conditions are shown in Fig. 5. A higher 

score represents a higher mental workload. The error bars indicate standard errors. The 

mental workload (NASA-RTLX) data were analyzed using a one-way ANOVA. As a 

result of the analysis, the main effect was not significant (F(5,55) = 1.912, p = .107). The 

statistical analysis showed that mental workload did not differ regardless of the types 

of hand gestures. Therefore, Fig. 4 and Fig. 5 reveal that input accuracy depends on the 

method by which force is applied; however, the types of hand gestures did not influence 

the input accuracy or mental workload scores. Participants stated the following: “I feel 

fatigued in the fist condition compared to the other gesture because nothing is held,” 

and “In the grip condition, the gripped object is large and hard, so it makes me tired 

controlling it.” We could not conclude that the difference in the gestures could not be 

attributed to the mental workload. However, the comments suggested that the gripping 

condition of the object may have an impact on the mental workload.   
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Fig. 4. Results of the experiment on input accuracy. We evaluated the input accuracy for each 

factor: a) gesture, b) target figure.  
 

Table 2. Significance of the target figure. The highlighted values show significant differences. 

 L1 L2 L3 L4 L5 L6 

L2 <.001 N/A N/A N/A N/A N/A 

L3 <.001 <.001 N/A N/A N/A N/A 

L4 <.001 .806 <.001 N/A N/A N/A 

L5 <.001 .005 <.001 .009 N/A N/A 

L6 <.001 .217 <.001 .162 <.001 N/A 

L7 .002 <.001 <.001 <.001 .120 <.001 
 

 
 

 
Fig. 5. Results of the experiment for the mental workload for each hand gesture. 
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5 Conclusion 

In this study, we explored the input accuracy and mental workload of EMG-based force 

strength by measuring multiple hand gestures. We built an application to measure track-

ing accuracy from force inputs. We defined seven control patterns and evaluated the 

accuracy and mental workload for six types of hand gestures. Through the experiment, 

we demonstrated that (1) EMG-based input accuracy was affected by the way force was 

applied. Specifically, (2) the smaller the force strength, the higher the tracking accu-

racy, and (3) the task of relaxing the force showed higher accuracy than strengthening 

the force. We also found that (4) the types of hand gestures did not influence tracking 

accuracy and (5) the mental workload scores.   

The experimental results may provide fundamental knowledge for designing user 

interfaces that use EMG as a force input. In future work, we plan to conduct a time-

series analysis of the EMG data in this experiment. We are also interested in analyzing 

the controllability of force input with other body parts.  
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